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1 Introduction

This report is about threshold-based consensus mechanisms for groups, and their application in the
context of internet freedom. It is about ways to use trust relationships to make collective decisions or
actions in so�ware.

By ‘threshold’ we mean a critically-sized subset of a group, o�en referred to as ‘m of n’, where n is the
size of the group, and m is the minimum number of members who must consent before a particular
action is taken on behalf of the group. By ‘mechanism’ we mean some way of ensuring this rule is
upheld. It could simply be social convention, or it could be a legal mechanism, but in the context of
the internet we are talking about cryptographic techniques.

Traditionally, cryptographic applications have been centered around individual actors rather than
groups, and have focussed on eliminating trust, rather than reinforcing it, with sentiments like “don’t
trust, verify”. This has been made necessary as a result of the social landscape of the online world,
where the absence of direct human contact makes it is very easy to deceive or impersonate others.
This requirement to be individualist and untrusting is alienating for many people, particularly for those
from cultures who highly value group membership and activities. But cryptographic applications can
also be designed for groups or social networks, where trust-relationships play a complementary role
to cryptographic techniques such as signing and encryption.

This report is based on our work developing Dark Crystal, a set of techniques and guidelines for secure
management of cryptographic keys using trust in small groups. We aim to help application developers
build tools where users rely on other users in a network of trust, as opposed to relying on a third-party
service provider. Our primary project is the Dark Crystal Key Backup protocol, which allows ‘social
recovery’ of sensitive data using threshold consensus. To assess the utility of this protocol, we have
built two features for the mobile messaging app Briar, which is aimed at high-risk users with security
concerns.

We discuss our protocol and the Briar features in the context of internet freedom in sections 2 and 3,
and go on to look at further use-cases for the techniques we use in section 4. In particular, we focus
on group governance mechanisms in collaborative so�ware. We cover some cryptographic protocols
for group collaboration and asses to what extent they allow the group to be managed in a secure and
democratic way, and discuss some existing applications for group collaboration and governance.

We also propose a design for a new protocol for ‘Key Re-issuance’ based on threshold signatures which
would complement our existing ‘Key Backup’ protocol.
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2 The Dark Crystal Key Backup Protocol

Terminology

• Secret Owner - a person who has a sensitive piece of data they want to backup.
• Shard - a single share of the backup data, generated by a secret-sharing algorithm.
• Custodian - someone who holds a shard on behalf of the secret owner.

The Key Backup protocol [12] is designed for safeguarding data which we don’t want to loose, but
which we don’t want others to be able to access. There is always a trade-o� between these two needs.
The more elaborate our methods of securing data are, the more easily we loose access ourselves. Our
approach is to require the consent of multiple trusted parties in order to recover access. This is achieved
using Shamir’s Secret Sharing algorithm [24] together with some other cryptographic techniques to
improve security and check integrity.

The goal is to be able to back up and recover some secret data. The secret owner chooses a set of
custodians, who each receive a shard of the secret data. If the data is lost, the custodians can return
their shards to the secret owner and the secret recovered.

Figure 1: Diagram from the protocol specification showing the backup process. The encrypted secret
together with it’s key is distributed into shards. The shards are encrypted for each custodian.

The protocol attempts to address a fundamental usability issue with cryptographic applications: the
‘Key Custody Problem’.
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Anyone who has experienced the frustration of forgetting the password for their GPG key will probably
agree that having a whole system propped up by our ability to look a�er a single piece of secret data is
rather precarious. The ‘Global Encryption Trends Study 2018’ [18], indicates that key management
issues pose a major barrier to the adoption of encryption tools. Modern encryption techniques are
strong, but the fear of loosing access to critical data mean they are o�en not adopted by those who
need them.

Let’s break down the Key Custody Problem. Most cryptographic systems rely on two assumptions:

1. You can access your secret key.
2. No-one other than you can access your secret key.

When these assumptions no longer hold, the system no longer works as intended, regardless of how
secure the algorithms used are.

Assumption 1 is broken when a secret key is lost (which could mean inaccessible or permanently
destroyed), and assumption 2 is broken when a secret key is compromised.

The Key Backup protocol addresses assumption 1, key loss, but not assumption 2. We can further break
down the key loss scenario into three categories:

• ‘Swim’ loss without compromise. For example, the device with the secret key falls deep into the
sea and we assume it to be permanently inaccessible to anybody.

• ‘The�’ loss with compromise - both assumptions 1 and 2 are broken. For example, the device
with the secret key was stolen, or we lost it in a busy public place and assume that someone else
has it.

• ‘Inheritance’ a situation where we actually want our key to be compromised following loss.
Generally, this means we died or have lost the capacity to do the things our secret key allows us
to do, and would like the key to be recovered by heirs.

The key backup protocol addresses ‘swim’ and ‘inheritance’, but it only partially helps us with ‘the�’. The
protocol does not o�er any way to resolve the problems associated with a key being compromised.

For the the� scenario, its important to consider what our secret key is used for. If an encryption key is
both lost and compromised, it is still important to be able to recover the key, since we would re-gain
access to any data encrypted with that key. But if a signing secret key is both lost and compromised,
we gain very little in recovering it. We can continue to use it to sign messages, but nobody can be sure
whether it was really us who signed. We will discuss a possible solution to this problem later.

2.1 Is local storage safer?

The idea of the key backup protocol is to o�er a distributed backup of a key held locally, so that we are
able to recover that local copy in case we loose it. This recovery mechanism makes it more practical to
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use the ‘local first’ model, where data is held on an individual’s device, giving the user ultimate control
over who can access it. Local-first application design is o�en touted as solving the problems associated
with centralised data storage, such as data extraction or abuse, and a lack of control for users.

However, the report ‘The Limits to Digital Consent’ [23] finds that the local-first model is ‘not inherently
safer for people or communities’ because ‘the risks of data accumulation are placed on the individual’.
When data is held in a centralised system, the organisation hosting it may have better resources to
protect that data than the individual themselves. For example, they may have legal expertise, better
access to legal representation, or employ better digital security techniques than the user.

So the risks associated with local-first so�ware are not only about data loss, but about being a target for
coercion into giving up that data. This might include legal action, physical threats, or exploiting security
vulnerabilities. Therefore, storing the data on a centralised server with a well-chosen organisation is
o�en safer than storing it on your own device.

Indeed, several applications for secure evidence gathering for high-risk users o�er this model. The user
uploads their evidence to a server run in a di�erent jurisdiction by an organisation with good access to
legal resources. The local copy can then be deleted for the safety of the user.

So in some cases, whats needed is not re-designing our so�ware architecture for the needs of high risk
users, but forming better organisations to provide services in the traditional client-server model. That
said, internet tra�ic to such organisations can be blocked or monitored. So as always, this is a solution
that fits some cases but not others.

Our key backup protocol doesn’t need to be used for a backup copy, it can also be used to distribute
the data whilst the original is intentionally deleted, just as users of the secure evidence gathering app
delete their copy a�er uploading it to a trusted server. The ‘remote wipe’ feature described below is an
example of this. Furthermore, the ‘trusted contacts’ for the protocol do not need to be individuals that
the user knows personally. They can also be organisations with good access to resources as we have
described here.

2.2 Relevance to high risk users

The Key Backup protocol addresses the needs of high risk users in two ways. Firstly, by providing a
way of recovering cryptographic keys which are lost accidentally, it makes applications which use
client-side encryption easier to use, and more likely to be adopted. Secondly, this recovery mechanism
makes it possible to intentionally delete sensitive data in a high-risk situation, such as when crossing a
checkpoint or border, or at a demonstration. Our two features for Briar are intended to give practical
examples of how the protocol can address these needs.

Our Threat Model report [13] discusses the security of the approach for various possible adversaries.
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2.3 Technical overview of the protocol

As described in the protocol specification document [12], there are several enhancements to the basic
Shamir’s Secret Sharing algorithm to improve security.

Figure 2: The input to the secret sharing algorithm is not the secret, but the key used to encrypt the
secret

Perhaps the most important one is adding authenticated encryption of the secret, and using the
encryption key as input to the secret sharing. This guarantees a uniformly random secret, and enables
us to programmatically determine whether or not recovery was successful.

Other features aim to reduce the amount of metadata given to custodians to the absolute minimum nec-
essary. The share-index is obfuscated, meaning custodians cannot know how many other custodians
there are, and optionally the secret is padded with zero-bytes to obfuscate its length.

The secret owner adds a signature to each share. This is to protect against shards being modified, mali-
ciously or accidentally, and achieves the same goal as schemes known as ‘Verifiable Secret Sharing’.

The protocol version number and a time-stamp are added to the shard message, and each shard is
encrypted using the public key of it’s destined custodian. The shards are then sent to each custodian,
and they are stored on the custodian devices. The security of this step is dependent on the transport
protocol used to send the shards.

2.3.1 Consent for being a custodian

The issue of gaining consent for taking custody of a shard, is complex and has no perfect solution. The
key backup protocol does not recommend a particular way of implementing consent, but o�ers three
possible models for developers to choose from based on the nature of their application.
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With the ‘weak consent’ model, the shard is sent right away, but on receiving it the custodian is asked
for their consent. If they refuse then the shard is deleted locally and a message sent to the secret-owner
to inform them. This has the advantage that in the ‘happy path’ (when everything goes well), the
backup is made very quickly, and implementation on the side of the secret-owner is fairly simple. The
disadvantage is that if a custodian rejects, the secret owner needs to send a new share set to the others,
and things get messy if some custodians try to return shards from the original set. Worse still, the secret
owner can never be sure the share was really deleted, which presents a security issue. Furthermore,
until the custodian reads and responds to the request notification, the shard exists in the application’s
‘inbox’ on their device such that they have in e�ect unwillingly accepted (at least temporary) custody.

With ‘strong consent’, the secret owner sends no shards until they have received an acceptance message
from all custodians. This is better for both security and for o�ering genuine ‘opt-in’ consent to the
custodians. However, until all these acceptance messages are receive there is no backup in place
whatsoever, and in practice we have found it o�en takes a long time to get responses for everyone,
particularly with apps where not everyone is always connected or signed in. It also presents a usability
issue to the secret owner, as they will not immediately see confirmation that the backup is set up.

The other model is simply ‘no consent’. Depending on the nature of the secret and the usability
and security trade-o�s of the other models in some cases we would recommend no explicit consent
mechanism. Of course users are still able to ask potential custodians themselves before making a
backup.

The di�erent consent models are described further in the Threat Model report [13].
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3 Use-cases implemented for this project

As part of this project we built two features for Briar. This was a case-project to asses the utility of the
protocol in the context of high risk users. The process and outcomes are discussed in detail in our
project case report [11].

3.1 Introduction to Briar

Briar is a mobile messaging app with a focus on security [7]. The interface is similar to many popular
messaging apps, but it works in a very di�erent way in order to meet the needs of high risk users.

Most mobile messaging applications consist of two pieces of so�ware, an app which runs on the user’s
device and a program which runs on a server hosted by the company who provides the app. This
server-side program coordinates the sending of messages between users and usually stores messages
so that messages are always delivered as soon as possible regardless of the user’s connectivity. Usually
client-side encryption is used, meaning the server operators are unable to access the message content.
However, they can access message metadata such as who sent a message to who, when it was sent,
how big the message was. They may also revoke the service, willingly or unwillingly, or have tra�ic to
their servers blocked or monitored. For high risk users these are serious issues.
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Figure 3: Screenshot of Briar

Briar consists of only a client side application. There is no Briar server running somewhere. There is
no way for the developers of Briar to know how many people are using the application or who they
are. Messages are sent either over the anonymity network, Tor, or directly over the local network or
bluetooth connection if possible.
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Figure 4: Diagram from Briar’s website showing how connections can be made

Furthermore Briar authenticates users using cryptography alone. Unlike some other messaging apps, a
Briar account is never linked to a phone number. This is beneficial to high risk users as phone numbers
can o�en be linked to other personal information.

These features give a great security benefit, but do introduce some usability issues. All responsibility for
the Briar account is le� to the user. There is no way to recover the account if the password is forgotten
or the device is lost.

3.2 User testing

As part of the case project we conducted two rounds of user testing sessions. The first of which was
organised by ourselves and the second by the National Democratic Institute and was hosted by their
partner project, Southeast Asia Freedom of Expression Network (SAFEnet) with participants of one
of their security training events. This gave us the opportunity to get feedback from people who work
on political campaigns or journalism who might have a genuine need for these features. For the
session with SAFEnet, the app was translated to Indonesian and the session was conducted with live
interpretation. This also gave us an insight into internationalisation issues around the concepts and
terminology we use in the features.

3.3 Social backup

3.3.1 Explanation

The social backup feature allows users to backup their account by distributing an encrypted backup
amongst a small group of trusted contacts. The user selects a set of their Briar contacts, and then
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chooses a threshold value - the minimum amount of contacts needed to recover the account. Shards of
their account backup are then distributed to these contacts using Dark Crystal’s Key Backup protocol.

Figure 5: Selecting a threshold value

When the Briar app is opened for the first time, there is an additional screen where the user may choose
whether to start a new account or recover their backup.
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Figure 6: Explainer screen shown to the secret owner when receiving a shard

When recovering, the secret-owner must physically meet with their custodians to transfer the backup
shards to their new device. Shards are transferred using a protocol similar to Briar’s ‘add contact
nearby’ feature, which involves scanning a QR code as well as transferring the encrypted data using a
local Wifi connection.

On successfully retrieving the critical amount of shards, the user is prompted to choose a new password
and the account is recovered.

3.3.2 How is the feature relevant to high-risk users?

Like many other security tools, Briar’s security comes at a cost to usability. Forgetting the password
or loosing the device means being permanently locked-out of your account. It is di�iculties like this
which make users less likely to adopt security tools. Social backup aims to improve usability.
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Furthermore, the presence of a backup feature makes in possible to for users to intentionally delete
their Briar data in a high-risk situation, with the possibility to recover it later, but without carrying
any of the backup data. This can be done in situations such as at a demonstration or when crossing a
border or checkpoint.

3.3.3 What data is backed up?

When we talk about backing up the ‘Briar account’, we mean backing up the keys which make the
account ‘yours’, meaning your contacts will be able to continue to contact you.

But there are other kinds of data stored by the Briar application which peers might not want to loose,
for example their contacts list, their messages, and their membership of particular groups, forums and
blogs. It should be noted that the actual content of forums or blogs themselves does not need to be
backed up, since when existing content can be retrieved from other peers when re-joining.

In deciding what to backup, there was a trade-o� between information peers are most concerned
about loosing, and what information they are most concerned about an attacker having access to
should our backup become compromised.

Our initial research showed high-risk users were most concerned about loosing their contacts list, as it
can o�en be very impractical or dangerous to regain contact by other means.

Message content however, seemed less appropriate to back up, as it is likely to contain sensitive details,
and the other party of the conversation generally still has access to it. That is, re-gaining contact with
someone gives you indirect access to your previous conversation with them, and all you really gain
by including the messages in the backup is the convenience of having them displayed on your device
without needing to ask.

Besides the clear disadvantage with regards to security, backing up content also has the disadvantage
of being arbitrarily big. Since we are asking others to hold the backup on their own devices, it becomes
less appealing for them the bigger the backup gets.

So we decided the backup should contain the account keys and the contacts list, as well as one other
thing which we will discuss next.

3.3.4 Mutual interdependence of social backups

Adding the contacts list meant that we needed to be able to dynamically update the backup payload,
because it changes over time as more contacts are added.

This required us to make an important change we made to the Dark Crystal protocol when integrating
it to Briar - the shards and encrypted backups could not be treated as a single message.
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So we decided to have one-time shard messages, which were shards of the key to decrypt a ‘backup’
message, and many ‘backup’ messages which are incrementally updated versions of the encrypted
backup itself. When a backup message is received, its version number is checked. If it is greater than
the version number of the backup currently held, the old backup is discarded and replaced with the
new one.

Putting this system in place gave us the opportunity to easily add other kinds of data to the backup
at a later stage. Most significantly, we add the shards one receives from other people to our own
distributed backup.

Figure 7: Recursive ‘shards of shards’ - a shard is a piece of an account backup, and an account
backup itself contains shards.

So when you get a shard from someones else’s social backup, if you have a social backup yourself you
add the shard to that backup, and send out the new version to your custodians. When you recover
your account, you are still holding the shard. This creates mutual interdependence and makes this
backup system very robust. Already we have the threshold mechanism which means we can recover
backups even if some proportion of the custodians have lost their shards, and now, even if we cannot
meet that threshold, there is the possibility to recover the missing shards from the custodians of the
custodians.
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3.3.5 Insights from user testing

3.3.5.1 Confusion around secret sharing

Users found the social backup concepts confusing. Many assumed that choosing more custodians
would make the backup less secure, as the data would be in more places. But actually the opposite is
true - the more custodians, the more places an adversary needs to go in order to recover the secret.
In response to this we added an additional explainer screen. But the concept is undeniably a little
unusual and unintuitive.

Figure 8: Screenshot showing an explainer screen for the Social Backup feature

Choosing the threshold was also a cause of confusion. We considered removing the option altogether,
and simply setting a recommended threshold value. But it is anyway important that the secret owner
understands how many contacts are needed in order to recover. We added some visual feedback to
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the threshold screen to make this clear.

Figure 9: Screenshot showing setting the threshold for Social Backup

3.3.5.2 Consent for custodians

One participant said they expected to be asked whether they wanted to accept a backup piece, and in
was noted that this is a desired feature. As discussed above, this is something we have given much
consideration to when developing the key backup protocol, and it is a complex issue with no perfect
solution.

3.3.5.3 Recovery option when starting the app

We had added an additional screen when the Briar app is started for the first time, which asks the user
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if they want to create a new account or restore an account from backup. This caused confusion right
at the beginning of the process as participants were not yet aware of what is involved in restoring an
account. In most cases, the user will want to create a new account, so we decided to make this the
default path and make the ‘restore account’ option less prominent.

Figure 10: Welcome screen before and a�er improvements

3.4 Remote Wipe

3.4.1 Terminology

• Wipee - a person who appoints others to be able to remotely wipe their account.
• Wipers - trusted contacts who may remotely activate a wipe of the wipee’s account.

3.4.2 Explanation

‘Remote Wipe’ allows a user to appoint trusted contacts with the ability to remotely activate the deletion
of all Briar’s application data. It is designed for situations where the user’s device is assumed to be
compromised by an adversary, for example when the user is arrested or captured. It works with a similar
threshold principle to social backup - the user chooses a set of trusted contacts, and a critically-sized
subset of these contacts may activate a remote wipe.
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However, this feature does not use a secret-sharing algorithm. The ‘wipe’ signals do not contain any
secret data, they are simply a particular type of message, and the user is able to verify whether it came
from one of the trusted contacts using Briar’s transport protocol.

Figure 11: The explainer screen displayed to wipers when sending a wipe signal

3.4.3 How is the feature relevant to high-risk users?

Remote wipe is designed for situations where a user’s device is seized by an adversary. This could
involve capture, arrest, or a raid of their home or workplace. Importantly, the feature is only useful if
the appointed wipers are made aware of the situation before the attacker accesses the device.

Another restriction is that the remote-wipe signals can only be received when the device is signed-in
to Briar, and has network connectivity. If they are sent when the device is not signed into Briar, the
wipe will be activated as soon as both the sign-in password is entered and the device has network
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connectivity. So it is possible that the attacker could hinder a remote wipe but putting the device into
flight mode.

3.4.4 How social backup and remote wipe complement each other

The ‘Social Backup’ and ‘Remote Wipe’ features have some big technical di�erences, but they both
essentially use the same principle - of assigning a special ability to some critically large subset of a
trusted support group. The two features complement each other because social backup can be used
to restore the account following a remote wipe. This takes the ‘dangerousness’ out of remote wipe,
making the ‘wipers’ more ready to use it. This might mean the use it even when there is only a suspicion
that the wipee’s device has been compromised, which makes the feature more powerful.

When we were implementing the user interface for Remote Wipe we realised how really similar the two
features are in terms of user experience, and asked ourselves if it would actually make more sense
to ‘roll the two features into one’ at the user interface level, making custodians for social backup and
wipers be automatically the one and same thing.

This would reduce the need to set up both features, saving time and cognitive load. It also addresses
the problem that a user might not feel the need to setup a remote wipe until its too late - making it
implicit in setting up a social backup means it is automatically there if needed. But we need to assess
whether there are some situations where you would want particular contacts to be custodians of your
social backup, but not able to activate a remote wipe, or vice-versa.

3.4.5 Insights from user testing

Generally we found much less usability issues with Remote Wipe than with Social Backup. Participants
understood the concepts well and had little di�iculties when using the feature for the first time. This
may have been partly due to our decision to use a fixed threshold of two, keeping the setup process
simple.

3.4.5.1 Adding confirmation on for a wipe being activated

Participants who took the role of the wipers noted that they would expect to see some feedback as to
whether a wipe had actually been activated, as otherwise they would worry that it had not. To make
this clear, we added an additional ‘wiped’ message type, which is sent to all wipers just before a wipe
is activated and displayed in the conversation view.
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Figure 12: Screenshot showing the confirmation message that Briar data has been wiped from the
remote contact

3.4.5.2 Merging the Social Backup and Remote Wipe features

When considering the possibility of merging the two features together, so that one set of trusted
contacts are used for both features, there were several insights from feedback and discussion during
the testing sessions which we discuss below. We eventually decided not to merge the two features
based on these findings.

3.4.5.2.1 What happens if members of the support group have their devices compromised?

Generally this is less dangerous for the Remote Wipe ‘wipers’ than for the Social Backup ‘custodians’.
Some participants said that for Remote Wipe they would choose people actively involved in their
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work, as being able to respond quickly outweighs the risk that these contacts might be targeted by an
adversary themselves. For social backup they would rather choose people in a stable situation who
were less likely to be targeted. So the roles are actually quite di�erent, which speaks against merging
the two features.

3.4.5.2.2 Are di�erent levels of trust needed for Social Backup and Remote Wipe?

This depends on the circumstances, but generally participants said that if Remote Wipe is only set up
when a backup is in place, Social Backup requires more trust than Remote Wipe.

3.4.5.2.3 Are di�erent thresholds appropriate for Social Backup / Remote Wipe?

With remote wipe, a rapid response is important so a low threshold (two) is recommended, even with
a large set of wipers. With social backup, it makes sense to have the threshold proportional to the
number of custodians, and generally great than two. We generally recommend 75%, rounding down -
for example 3 of 5. But having di�erent thresholds does not mean we cannot use the same support
group for each.

3.4.5.2.4 What are the implications of support group members knowing who each other are?

With Remote Wipe, it is important that the wipers know who each other are, as they may need to inform
each other of the situation, or discuss whether activating a wipe is appropriate if they are unsure. With
Social Backup there is a great security advantage in custodians not knowing who each other are, as an
adversary cannot coerce them into giving up the identities of the others. This is another argument to
not merge the two support groups.

3.4.5.2.5 Are there some cases where you would want somebody to be a backup custodian but
not a remote wiper, or vice-versa?

Participants said that for social backup they would choose people in a ‘stable situation’ such as older
relatives, who were unlikely to loose their device, and that for remote wipe they would rather choose
people with whom they have most regular contact and who are most involved in their activities, as
they were likely to know sooner when they are in danger.
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4 Further use cases (beyond social backup and remote wipe)

4.1 Group governance

Threshold-based consensus mechanisms have the potential to be used for group governance or group
management. Making group decisions or actions in this way is nothing new. Some legal structures for
organisations require a majority vote for a certain decision to be made, or a group bank account might
require at least two members to sign a cheque before the bank will accept it as valid. Importantly,
these mechanisms are not supposed to replace the process of discussing the decision as a group and
coming to a common agreement - they are additional measures. That is to say, just because only two
members are needed to sign a cheque does not mean they don’t need to consult the rest of the group
or follow the group’s guidelines - we use a combination of both social conventions and rules imposed
‘mechanically’.

The popularity of the internet has meant that so�ware is becoming increasingly collaborative. Groups
using collaborative so�ware o�en have actions that need to be made on behalf of the group. These
might include allowing a particular member to join the group, blocking particular members or content,
and publishing content on behalf of the group.

Much of the existing so�ware which allows these kinds of collaborative actions is based on the client-
server model. That is, the logic behind these decisions about user actions and privileges runs on
a program on the server, and anyone who has administrator access to the server can essentially
override these rules. Using cryptographic techniques, it is possible to implement these sorts of group
governance mechanisms in such a way that this logic is implemented on the client (meaning each
user’s device) and that in order to participate one must run a client which abides to these rules.

This has the advantage of being more genuinely democratic, there are no ‘superusers’ or system
administrators with special powers. Furthermore, the system cannot be undermined by an adversary
who gains access to the server. But there are also some disadvantages - they are more complicated to
implement, and there are always some edge-cases or particular circumstances where we might not
want the rules to be applied.

4.1.1 Relevance to Internet Freedom

Methods of group governance are essential for communities or political groups to organise. As more
and more group activities take place online, it is important that the collaboration so�ware used o�ers
a democratic way of managing the permissions and rights of group members. O�en, ultimate control
over the services used is implicitly given to the members with more technical abilities, or those with
administrative access to the server which runs the so�ware. These issues become more even prominent

Magma Collective 25



Dark Crystal - Report

for remote teams who have limited opportunity to gain an understanding of each others’ viewpoints
and feelings.

Furthermore, cryptographic techniques enable group governance systems which use peer-to-peer
architectures. Such architectures help mitigate issues with privacy and censorship, as there are no
servers which can be compromised or shut down. This makes the peer-to-peer model an attractive
option for high-risk users. Unfortunately, developing peer-to-peer so�ware is usually more di�icult as
so much of the existing so�ware paradigms and protocols are based around the client-server model.

4.1.2 Cryptographic schemes for groups

4.1.2.1 Group threshold signatures

Group signatures, as described by Chaum in 1991 [8], allow a group member to make a signature on
behalf of a group. A verifier with the group public key can determine whether a message was signed by
a member of the group but not which member they are.

Threshold-based group signature schemes extend this notion to require consensus of a specific quorum
of group members in order to produce a valid signature.

As well as having applications in electronic voting, group signatures can be used to make assertions on
behalf of a group, for example a public statement which can be verified by anybody, or some internal
group message representing an agreed action. Threshold group signatures make this practical as there
is a specific degree of member agreement required to create a valid signature.

Some group encryption schemes rely on a trusted ‘dealer’ to coordinate the scheme, which is typically
a program running on a server to which all group members have access. Although this o�en makes
the schemes simpler, this is something we want to avoid when choosing a scheme as it introduces a
security weakness.

4.1.2.1.1 Group Signatures or multiple signatures?

Before we look at schemes for group threshold signatures, we should ask ourselves whether we really
need them as there is a very simple way of solving the same problem - by using multiple signatures:

• Take the ‘group public key’ to be the concatenation of all member’s public keys, and the threshold
value.

• All members who wish to sign a message do so, and publish their signature.
• Count how many of these signatures we are able to validate using the public keys contained in

the ‘group public key’, allowing only one signature per public key.
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• If we have met the threshold, we have consensus for this message.

Figure 13: Multiple signatures: There is no aggregation of keys or signatures, we simply check if a set
of signatures validate with a set of public keys

This system works, and it has some advantages: it is simple, it functions with any existing signature
scheme and members can use the same keypair for signing messages as an individual or as a group
member. But it does not keep private the identities of group members, or of who signed a particular
message. In some cases this is a problem, but in some cases we actually prefer to have transparency.
It is like voting on a decision by raising your hand in a group meeting. The lack of anonymity might
be a problem in some cases, as we are afraid to reveal our position to the rest of the group. But in
other cases we prefer that our voice can be heard as it helps us get an understanding of each others
opinions.

Much of the recent work on threshold group signature schemes cite blockchain applications as a
primary use case. These are applications where there is an incentive to minimise how much data is
published, and privacy of group members is important because blockchains are inherently publicly
available. We need to keep in mind that the use-case for internal group governance is very di�erent.

So we need to make a distinction between two kinds of use-cases. For internal group actions where
anonymity is not important and published signatures are only accessible by group members, we can
use multiple signatures. For anything involving open publication, if we want to hide the identities of
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the individual signers, we should use a group threshold signature scheme.

4.1.2.1.2 Boneh-Lynn-Shacham

The Boneh-Lynn-Shacham (BLS) signature scheme is an elliptic curve scheme [5]. It was developed for
its short signatures, but also has some desirable properties for building protocols. There are a number
of operations which can be done on a private key, public key, signature tuple which produce another
valid tuple. For example, a set of public keys can be ‘added’ to produce an aggregate public key [4]. If
the corresponding signatures for a single message are also aggregated, we have an aggregate signature
which can be validated with the aggregate public key.

Figure 14: BLS Signature aggregation - if public keys and signatures are added together we get an
aggregate signature with can be validated with the corresponding aggregate public key

Besides this ‘addition’ operation for aggregating, we can use Shamir’s shares of a private key as individ-
ual private keys, sign a message with them, and ‘combine’ the signatures using Shamir’s polynomial
interpolation to get a group threshold signature which is valid for the corresponding ‘combined’ public
key. Using distributed key generation, it is possible for a group to make such signatures without any
member ever knowing the group private key.
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Figure 15: BLS Threshold signature - Here, 2 of 3 members’ signatures are combined to give a group
signature. The group public key is the same regardless of which members signed

4.1.2.1.3 Distributed key generation and threshold signatures for ECDSA

BLS has some great properties, but in some cases we might be designing a system where we are re-
stricted to using a particular signature scheme, such as Ed25519. There are a number of schemes which
o�er more generalisable methods of doing distributed key generation and threshold signatures [1],
although o�en they involve many rounds of communication making them complicated to implement.
Gennaro and Goldfeder’s scheme [14] uses Paillier homomorphic encryption to allow members to add
their share contributions together without revealing them to each other.

4.1.2.2 Group encryption

Another tool we have for group governance using cryptography, is to be able to specify who is able to
access a particular message or piece of data. Very o�en we want to make some data only available
to members of a group, and in order to do that we need agreement about who those members are.
We need to decide carefully which mechanism we use for this, as being able to make decisions about
who is or isn’t a group member is fundamentally important to the existence of the group. We will
look at some group encryption schemes and assess to what extent they require consensus of group
members.

Group encryption is a hard problem in cryptography, particularly for dynamic groups where members
join and leave. Many schemes require coordination by a trusted server, which is something we ideally
want to avoid.
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First lets think of the most simple way to do group encryption. We can encrypt a message separately for
each group member, and sent it to them. This means the author of each message can decide who the
group members are every time they write a message. It could be argued this does not really constitute
a group at all. Depending on how messages are stored and sent, this might also mean some duplication
of data, as the same message is encrypted many times. This duplication problem can be mitigated by
encrypting the message once using a single-use symmetric key, and encrypting the key for each group
member.

Another simple scheme is to use a symmetric key for all group messages. That is, anyone we give the
group encryption key to is e�ectively a group member and can read the group messages. This is good
because it requires means we always address all group members, we cannot exclude anyone. But it
also means any member may distribute the key to someone else (willingly or unwillingly), and it is
impossible to know how many individuals have the group key. The only way access can be revoked for
future messages is by agreeing a new group key, and re-distributing it to the desired set of members.
This scheme is only secure when used together with a public-key encryption scheme in order to
distribute the group key.

Di�ie-Hellman key exchange, which is the most common way to establish keys for encrypted commu-
nication between two individuals, can be extended for multi-party communication. It should be noted
that we cannot mix the two. That is, is Alice, Bob and Carol may securely communicate as a group,
but the key-exchange process involves revealing the shared secrets between any two of them, so they
cannot use the same keypair for secure communication between only Alice and Bob. (add reference)

4.1.2.2.1 Tree-based Group Di�ie-Hellman

Tree structures have been proposed to agree a group key composed of several members [26]. Each leaf
of the tree is a member with a personal encryption keypair. They do a Di�ie-Hellman key exchange
with another member to get the secret key for their parent ‘node’ in the tree. They then compute the
associated public key for this node, which is o�en referred to as ‘blinding’ the key so that it can be
safely distributed to other members. Once enough ‘blinded’ node keys have been distributed, every
member can compute a common group secret key. They must only know their own secret key, as well
as the relevant ‘blinded’ public keys on their path to the root of the tree.
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Figure 16: A key tree. Secrets are shown in red boxes, and only obtainable by members below them in
the tree. The associated ‘blinded’ keys (green) are distributed to other group members such that all
members can compute the root key

With this system, computing the group key requires consensus on who the members are. That is, we
can only participate in the group (by reading or writing encrypted messages) if we agree on the set
of members. A group member joining or leaving means a new group key will be computed, so if any
member is unaware of the change, they will no longer be able to participate.

It should be noted however that the current group root key can be ‘leaked’ by a member, and anyone
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with it will be able to participate for as long as the member set stays the same, unless there is some
sort of re-keying protocol in place.

This system is described in the Internet Engineering Task Force (IETF) document RFC2627 [25], although
it should be noted the proposed protocol involves a centralised server for coordinating the exchange.
Many di�erent protocols (eg: [6], [20]) have been published based on this idea, with di�erent methods
for handling group members joining and leaving.

To do this without a trusted server for coordination, there must be a way to deterministically decide
which members share parent nodes in the tree. Kim, Perrig, and Tsudik [19] suggest a protocol where
an ‘insertion node’ for a new member joining is chosen to be the shallowest, rightmost node where
the join would not increase the depth of the tree. If the tree is equally balanced (like the one pictured
above) the root node is taken to be the insertion node and the new tree will be deeper. The rightmost
existing member who is a child of the insertion node takes the role of the ‘sponsor’ who computes the
relevant blinded keys for the new version of the tree and broadcasts them to the other members. So a
member’s position in the tree is determined by the order in which they joined.

Another possible approach would be to order the list of members numerically by their public keys.
Given the public keys of the other group members, we can deterministically find our position in that
list and our adjacent partner with whom we ‘pair with’ to contribute to the group key. Any change to
the set of members requires the same process of creating the new ordered list of members.

The process of setting up such a tree, or re-keying later, requires the participation of several group
members. Even if we know the public keys of all prospective members of a group, we cannot begin
encrypting messages to the group until we get know the blinded keys from the branches of the tree
besides our own. This can be seen as a disadvantage, as group setup requires multiple rounds, or as
an advantage, as a participatory setup process requires agreement within the group.

4.1.2.2.2 Messaging Layer Security

Messaging Layer Security (MLS) is a group encryption protocol proposed as a standard to the IETF. At
the time of writing the protocol is a dra� working document [2].

The protocol [10] is also based on a Di�ie-Hellman tree structure, but additionally uses ratcheting to
o�er both forward and post-compromise security. It aims to scale well to large group sizes and can
function asynchronously, meaning it does not require group members to actively interact in order to
establish keys for each message, so that the system tolerates group members not being constantly
online. It is possible to communicate securely as a group, even if no two group members are ever
online at the same time. Furthermore, a peer may create a group and send the first encrypted message
immediately even if every other member is online.
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While these are very desirable properties for many use cases, for group governance we might actually
want to impose the cooperation the other group members (or at least a critically-sized subset of them).
MLS is designed to fit the needs of group communication for mobile instant messaging apps, whereas
our use-case is consensual group governance.

Furthermore, MLS requires public server infrastructure to cache ‘pre-keys’ for the protocol in order to
make these asynchronicity guarantees, which is something we want to avoid. However, note that the
‘pre-key’ cache system, as proposed by Marlinspike for TextSecure [22], does not require the server to
be trusted. All pre-keys are signed with a long term signing key, and the client who generates them
is maintains which key-ids have already been used, so if the server gives out the same key twice, the
second one will be rejected.

Figure 17: With MLS, we have a Di�ie-Hellman key tree, but the person who sets up the group ‘makes’
keypairs for the other members’ leaf nodes using a key exchange protocol. The initiator can then
compute the whole tree and start encrypting messages without needing to wait for any other member
to respond

With MLS, we have a tree-structure just as the one above, but instead of each leaf node being the
member’s long-term ‘identity’ keypair, the group initiator, Alice, derives new keypairs for each of the
other members using a single-round key exchange protocol, such that only Alice and that member
are able to compute the secret key. This process involves both the member’s identity keypair and
ephemeral public ‘pre-keys’ retrieved from the third party cache. Of course if we want to avoid this,
members could generate these keys during the setup process, but then Alice must wait for a response
from Bob before she can encrypt the first group message.

It should be noted that such groups are not composed deterministically. That is, if Alice and Bob both
independently create groups with the same set of members, we will have two separate groups, as
di�erent ephemeral key material will have been used to create them.

To achieve post-compromise security, each group member periodically updates their leaf-node keypair
and send the updated pubic keys along their co-path to the rest of the group. The members then
compute the new root key, and hash in the previous one using a key derivation function, to give forward
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secrecy. This means the current key for the group depends on both the ‘chain’ of previous group states
and newly generated key material.

Previously, such ratcheting techniques which o�er both forward and post-compromise secrecy have
generally only been proposed for two-party encryption protocols [9]. MLS’s ‘Asynchronous racheting
trees’ extend this to groups.

For group governance applications, we want a protocol similar to MLS in that we use a ratcheting tree
for security, but di�erent in that we favour member participation over asynchonicity. That is, we are
more interested in gaining consent through active participation of group members during the setup
process than on being able to send messages instantly.

4.1.3 Existing group governance tools

Here we look at some collaboration so�ware and assess their methods of administrating the group.

4.1.3.1 Loomio

Loomio [21] is decision-making so�ware and web service designed to assist groups with the collabora-
tive consensus focused decision-making processes. It is a free so�ware web application, where users
can initiate discussions and put up proposals.

Figure 18: Loomio, a voting-based decision making tool
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Loomio provides a platform for both casting votes on an issue and discussing it, which is important
particularly when group members are unable to meet face to face. Discussing the issue and gaining
an understanding of other members’ opinions is perhaps the most important part of the consensus
process.

However, Loomio assists in making group decisions, but not in upholding the decided action. For
example, if group members vote on whether to allow a new person to join the group, it is still the
responsibility of an administrator to ultimately decide whether the chosen action is carried out. Fur-
thermore since it is web-based so�ware, the administrators of the server have ultimate control over
the service.

So Loomio is a great tool for facilitating discussion and decision making, and perhaps it could be used
in combination with cryptographic group governance techniques.

Figure 19: Annotated screenshot of Loomio

4.1.3.2 Keybase

Keybase [27] is a secure messaging and file-sharing app with support for private groups. It uses a
centralised client-server architecture with client-side encryption. The client app is open-source but
the server code is not.
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Figure 20: Screenshot of Keybase

Both files and chat channels are encrypted with granular control over permissions - individual channels
or folders can be restricted to particular members. Identities on Keybase can be ‘proved’ by linking
them with other social network platforms by publishing a signature on those platforms. PGP keys and
control of a specific website can also be proved in this way.

Group members may have an ‘admin’ role which allows them to add or remove members, as well as
give or revoke admin status to other members. The initiator of a group is automatically an admin. That
is, there is no inherent consensus mechanism for a member joining or leaving the group. It is possible
to give all members the admin role, but then any member may add or remove anyone else without
consulting any other member.

Being a client-server application, the company providing the Keybase so�ware have ultimate control
over the service. They are unable to decrypt content, but they have access to identities of group
members as well as other metadata, and may remove content or revoke the service entirely.
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4.1.3.3 Nextcloud

Nextcloud [16] is a free and open-source file-hosting and cloud application platform. Organisations may
run the so�ware on their private servers, giving them a lot of autonomy in comparison to using cloud
services hosted by a third party. Besides file-hosting, Nextcloud o�ers many collaboration applications
useful to organisations, such as calendars, chat, and o�ice so�ware.

Figure 21: Screenshot of Nextcloud

Transport encryption and server-side encryption are o�ered by default but client-side encryption is an
opt-in feature for specific folders. When using the client app rather than the web interface, folders are
synced with a local copy, meaning each group member has their own copy of their group files, which
remains available should the server go down.

A single Nextcloud instance can have multiple groups using it with di�erent permissions. Because
of this, Nextcloud has two types of administrators: Super Administrators and Group Administrators.
Group administrators have the rights to create, edit and delete users in their assigned groups. Group
administrators cannot access system settings, or add or modify users in the groups that they are not
Group Administrators for. Super Administrators can access all settings and create or delete users in all
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groups.

As well as the administrator role system within the Nextcloud so�ware, being a client-server application,
those who have administrator access to the server have ultimate control. Since Nextcloud is self-hosted,
this means that at least these administrators are members of the group. But this means that the more
technically able group members have the most power, and that administrators may take actions such
as revoking the service without consulting other group members. The physical location of the server
can also create a power imbalance, if there is not a collective space to keep it.

Self-hosted client-server platforms like Nextcloud are undoubtedly very empowering tools for groups
of high-risk users, and arguably the best thing we have right now. But we think better still would be a
peer-to-peer architecture combined with cryptographic techniques to ensure administrative decisions
are made democratically.
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4.2 Design for a Key Re-issuance Protocol

The Dark Crystal Key-backup protocol addresses only one component of the key custody problem:
key loss. The other component, key compromise, requires a way of proving or re-establishing our
identity in the cryptographic system we are using, such that the compromised key is made e�ectively
useless.

We propose a design for a new protocol for establishing a new key, so that an identity is not defined
by a particular key, but by a series of keys, where the final key is the active key we currently use. This
specifically addresses the cases where keys might have been compromised. Our design uses the BLS
signature scheme.

It works by each peer assigning a ‘support group’ who are empowered to make assertions on their
behalf. This is similar to the group of custodians for social backup. The support group can announce
a new key when the old one is assumed to be compromised, and any other peer can validate these
announcement messages and determine the current key for a particular identity.

This is done is such a way that the identities of the members of the support group are kept private,
and that there is specific degree of tolerance to a particular group members being unavailable or
uncooperative. The basic process is as follows:

1. The identifier holder, Alice, chooses a set of trusted contacts as her support group, and a threshold
amount needed to make an assertion on her behalf.

2. Each trusted contact makes a contribution to a distributed key generation, collectively producing
an aggregated group public key.

3. Alice publishes the support group’s public key signed with her current identity keypair.

4. In the event of key loss or compromise, Alice generates a new keypair, e�ectively making a fresh
account on the system, finds the contact information for her support group members, and sends
them a signed, timestamped message containing her new public key. She also contacts them out
of band to confirm it was her. By ‘out of band’ we mean using some communication system where
authentication does not rely on the compromised key - such as a telephone call or personal
meeting.

5. Group members who are convinced of Alice’s new identity respond by signing her message and
Alice aggregates their signatures to produce a single signature. If enough members have signed,
this signature can be validated with the group public key. Alice publishes this message, which
serves to assert her new public key, and also to revoke the old one.

6. Any client so�ware which seeks to validate messages from Alice must resolve her current public
key by looking for these messages which are signed by her trusted group.
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7. If support group members change, the new group’s aggregate public key announcement must
be signed by both Alice and the old group.

Figure 22: A key re-issuance message

Importantly, anonymity of support group members is maintained. Nobody but Alice can see which
group members created the signature or who the group members are. This makes it di�icult for an
adversary to target the support group in order to impersonate Alice.

The scheme looks promising, although we glossed over the most complicated part of the process -
the distributed key generation in step 2. There are already several protocols and implementations
of this process, eg: [3], [15], but it is important to note that this process involves multiple rounds of
communication between members of the support group.

Specifically, each member needs to send each other member a public ‘verification vector’ as well as a
secret key contribution which should be encrypted specifically for the recipient member. This might
not sound so di�icult, but since we cannot guarantee that all members are simultaneously online,
the setup process could take some time, which is going to e�ect usability. [17] o�ers some possible
optimisations to reduce complexity.

Another major disadvantage of this scheme is that unlike the Key Backup protocol, this protocol cannot
be used with existing systems which have not implemented this mechanism.
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4.3 Inheritance

Returning to our three key loss scenarios, ‘inheritance’ describes the case where we actually want a
key to be able to be compromised in a specific situation. The secret owner might have a wish for what
happens to sensitive data of theirs in the case that they captured, imprisoned, or killed.

Our key backup protocol is useful for these situations, but this is a very di�erent use case to that of the
secret owner recovering the data themselves, and so requires very di�erent usability considerations.
Most importantly, the heirs do not only need to be able to access the secret data, they also need to know
what to do with it. For example if it is an encryption key, they need to know where is the encrypted
data, what so�ware can be used to decrypt it, and what should be done with the secret documents
when they are recovered.

4.3.1 User story for Inheritance case

Carol is a journalist investigating corruption in a near-east country under a repressive regime. She has
recently received some sensitive documents from an anonymous source, and is concerned that this
makes her a target. If she is captured, this information may never come to light. She is careful with her
handling of the documents, avoiding that surveillance would reveal that they exist, or that others who
discover them could reveal the information in an inappropriate or untimely manner, damaging the
investigation. She therefore stores the files on a remote server, encrypted with her private key, which
she accesses through Tor.

• In this case, Carol chooses to shard her key using a secure communications app that has imple-
mented the Dark Crystal key backup protocol, allowing for any data of the user’s choice to be
sharded.

• Carol opens the app, opens the options menu and chooses the ‘share a secret’ option from the
list.

• The app asks Carol to enter the secret which she wishes to share. She does this by clicking on
the ‘add from device’ option. This allows her to access her device’s file system, where she locates
her private key and clicks ‘add’.

• The next screen asks Carol if she would like to attach a note or label to her secret. She decides to
provide brief instructions on where her custodians can find the sensitive files, and what they
should do with them. She clicks ‘done’.

• Carol is then asked to select her trusted custodians from her list of contacts. She chooses 6
trusted contacts. The custodians she chooses are all contacts from her professional network
- a combination of lawyers, reporters and campaigners - and are all located abroad, outside
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of the jurisdiction she is residing within and reporting on. This further secures the data from
compromise.

• When asked to select a quorum of these who will be required to recombine the secret, she
chooses 4. The user interface provides visual guidance relating to the security provided by the
number she chooses for each.

• The app appends the label to the secret and executes the sharding algorithm. It then o�ers
Carol the option to add additional information to the shards before encrypting them with the
custodian’s public keys.

• In this specific case, as she needs the custodians to know who one another are so that they can
recombine the secret in her absence, Carol chooses to append the custodian’s identities to the
shards. This means that the identities are encrypted in transit and at rest on the custodians’
devices, but that the custodians can discover one another once they decrypt their shards should
the need arise.

• Alternately, if she decides that despite their locations, she would prefer not to encrypt the shards
together with this list, she can simply contact the custodians out of band to let them know who
one another are, ensuring that this information is never stored together with the shards.

• She then clicks ‘send shards’ and the app sends the shards to her custodians.

• As she proceeds with her work, Carol continues to update the files encrypted with her key. Some
months later, while still investigating the case, she disappears on her way to work one morning,
never arriving at the o�ice. Realising this, her colleague sends a message to their professional
network and begins publicising her disappearance through media channels.

• Eventually one of her custodians decides that it is an appropriate time to recombine the shards,
find out what Carol was working on and execute her instructions.

• He contacts the other custodians to let them know. The other custodians independently confirm
that she has in fact disappeared, and that the initiator is who he claims to be. Once they are
confident that the situation is authentic, they collectively choose one of them to whom they will
all forward their shards.

• On receiving the shards, the recipient is able to recombine them, revealing both the encryption
key and the instructions that Carol has provided. They are then able to execute her wishes in
relation to the data she was protecting.

It should be noted that in this scenario, as indicated above, it may be desirable to implement a mech-
anism to ensure that the custodian who initiates the recombining of the shards is not the one who
gains possession of the secret. This provides an extra layer of protection in the case that one of the
custodians is or becomes malicious.
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5 Conclusion

Our Key Backup protocol as well as our work with Briar have shown a concrete use-case for threshold-
based secret sharing in the context of internet freedom. We have discussed the associated usability
and security issues in order to best inform anyone considering adopting this technology.

In terms of wider use-cases, we have focussed on group governance in collaborative so�ware, as
this seems the most relevant and applicable. We looked at existing models in popular collaborative
so�ware, and the potential power imbalances from both within the group and external actors.

We have also proposed a design for a new protocol for ‘Key Re-issuance’ which, in combination with
our existing Key Backup protocol, aims to fully address the problem of key custody described in this
report.

Throughout this report we advocate a peer-to-peer architecture combined with cryptographic tech-
niques to ensure administrative decisions are made democratically, as well as key management
techniques to ensure responsibility is distributed amongst the collective.
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