

Page 1 of 12

Privileged and Confidential
Report

 Security Assessment of Magma Collective’s

Dark Crystal Protocol

Page 2 of 12

Privileged and Confidential
Report

TABLE OF CONTENTS

Executive Summary ... 3

Scope and Methodology ... 3

Assessment Objectives .. 3

Findings Overview ... 3

Next Steps ... 3

Risk Categorizations .. 4

Critical-Risk .. 4

High-Risk.. 4

Medium-Risk ... 4

Low-Risk .. 4

Informational .. 4

Introduction .. 5

The Dark Crystal Protocol .. 5

Project Scoping .. 5

Critical-Risk Findings ... 7

High-Risk Findings ... 7

Medium-Risk Findings ... 7

Low-Risk Findings .. 7

L1: Out-of-Date Library in Use .. 7

Informational Findings .. 9

I1: Malicious Custodian Can Disrupt Recovery ... 9

I2: Resource Exhaustion Under No/Weak Consent Custodian Model .. 10

I3: Lack of Validation in Share Size May Allow Buffer Overrun .. 11

Page 3 of 12

Privileged and Confidential
Report

EXECUTIVE SUMMARY

Scope and Methodology

Include Security performed a security assessment of Magma Collective’s Dark Crystal Protocol. The assessment
team performed a 9 day effort spanning from July 23rd, 2021 – August 4th, 2021, using a code review standard
assessment methodology which included a detailed review of all the components described in a manner
consistent with the original Statement of Work (SOW).

Assessment Objectives

The objective of this assessment was to identify and confirm potential security vulnerabilities within targets in-
scope of the SOW. The team assigned a qualitative risk ranking to each finding. Recommendations were
provided for remediation steps which Magma Collective could implement to secure its applications and systems.

Findings Overview

IncludeSec identified 1 finding which was deemed to be “Low-Risk” that could pose some tangible security risk.
Additionally, 3 “Informational” level findings were identified that do not immediately pose a security risk.

IncludeSec encourages Magma Collective to redefine the stated risk categorizations internally in a manner that
incorporates internal knowledge regarding business model, customer risk, and mitigation environmental
factors.

Next Steps

IncludeSec advises Magma Collective to remediate as many findings as possible in a prioritized manner and
make systemic changes to the Software Development Life Cycle (SDLC) to prevent further vulnerabilities from
being introduced into future release cycles. This report can be used by as a basis for any SDLC changes.
IncludeSec welcomes the opportunity to assist Magma Collective in improving their SDLC in future engagements
by providing security assessments of additional products. For inquiries or assistance scheduling remediation
tests, please contact us at remediation@includesecurity.com.

mailto:remediation@includesecurity.com

Page 4 of 12

Privileged and Confidential
Report

RISK CATEGORIZATIONS

At the conclusion of the assessment, Include Security categorized findings into five levels of perceived security
risk: Critical, High, Medium, Low, or Informational. The risk categorizations below are guidelines that
IncludeSec understands reflect best practices in the security industry and may differ from a client's internal
perceived risk. Additionally, all risk is viewed as "location agnostic" as if the system in question was deployed
on the Internet. It is common and encouraged that all clients recategorize findings based on their internal
business risk tolerances. Any discrepancies between assigned risk and internal perceived risk are addressed
during the course of remediation testing.

Critical-Risk findings are those that pose an immediate and serious threat to the company’s infrastructure and
customers. This includes loss of system, access, or application control, compromise of administrative accounts
or restriction of system functions, or the exposure of confidential information. These threats should take priority
during remediation efforts.

High-Risk findings are those that could pose serious threats including loss of system, access, or application
control, compromise of administrative accounts or restriction of system functions, or the exposure of
confidential information.

Medium-Risk findings are those that could potentially be used with other techniques to compromise accounts,
data, or performance.

Low-Risk findings pose limited exposure to compromise or loss of data, and are typically attributed to
configuration, and outdated patches or policies.

Informational findings pose little to no security exposure to compromise or loss of data which cover defense-
in-depth and best-practice changes which we recommend are made to the application. Any informational
findings for which the assessment team perceived a direct security risk, were also reported in the spirit of full
disclosure but were considered to be out of scope of the engagement.

The findings represented in this report are listed by a risk rated short name (e.g., C1, H2, M3, L4, and I5) and
finding title. Each finding may include if applicable: Title, Description, Impact, Reproduction (evidence
necessary to reproduce findings), Recommended Remediation, and References.

Page 5 of 12

Privileged and Confidential
Report

INTRODUCTION

The Dark Crystal Protocol
Dark Crystal is a protocol and set of libraries and guidelines designed to make social management of
cryptographic keys easy. It is particularly suited for peer-to-peer, decentralized applications, and is being
integrated into the Briar messaging app.

At a high level, the protocol uses Shamir's Secret Sharing to split a secret key into multiple shards, and shares
those shards among trusted peers of the secret owner. If the secret owner needs to recover their secret key,
after confirming with a threshold of peers, they can request their shards and recombine them. The Dark
Crystal website contains directions and considerations of how every step of this process can best be
implemented into applications.

Project Scoping

On July 23rd, 2021, the assessment team began reviewing the Dark Crystal protocol for security vulnerabilities,
specifically looking for protocol design flaws or security concerns in the Java implementation. The following
code repositories were reviewed during this assessment:

sss
Third-party repository offering a C language implementation of Shamir's Secret Sharing. It is designed to be
side-channel resistant and leverages operating system randomness.

dark-crystal-shamir-secret-sharing
This wrapper provides Java Native Access bindings to the sss C library, enabling its functions to be called from
Java code.

dark-crystal-secret-sharing-wrapper
A higher-level wrapper for the secret sharing functionality, including improvements such as shard signing and
x-coordinate obfuscation.

dark-crystal-key-backup-crypto-java
These cryptographic functions, including a partial implementation of the NaCL Networking and Cryptography
library including the XSalsa20, Poly1305, and EdDSA algorithms, are leveraged by the rest of the system.

dark-crystal-key-backup-message-schemas-java
These protobuf schemas are for messages sent and received in the Dark Crystal protocol, along with JSON
validators. The messages can contain shard shares, along with both required and optional metadata.

dark-crystal-key-backup-java
This high-level implementation of the protocol brings together all the other projects. It is currently a work in
progress.

In addition, Dark Crystal documentation was consulted carefully to understand the project aims, particularly:

• Protocol Specification

• Threat Model

• Worked Example

https://briarproject.org/
https://en.wikipedia.org/wiki/Shamir%27s_Secret_Sharing
https://darkcrystal.pw/
https://darkcrystal.pw/
https://github.com/dsprenkels/sss
https://gitlab.com/dark-crystal-java/dark-crystal-secret-sharing-wrapper
https://gitlab.com/dark-crystal-java/dark-crystal-secret-sharing-wrapper
https://gitlab.com/dark-crystal-java/dark-crystal-key-backup-crypto-java
https://gitlab.com/dark-crystal-java/dark-crystal-key-backup-message-schemas-java
https://gitlab.com/dark-crystal-java/dark-crystal-key-backup-java
https://darkcrystal.pw/protocol-specification/
https://darkcrystal.pw/threat-model/
https://darkcrystal.pw/worked-example/

Page 6 of 12

Privileged and Confidential
Report

Glossary
The following definitions from the Dark Crystal documentation are used throughout this report:

• Peer: an individual within a given social network

• Key: a peer's or secret-owner’s encryption key

• Secret: the data to be backed up and potentially recovered

• Secret-owner: the peer to whom the data belongs

• Shard: a single encrypted share of the secret

• Custodian: a peer who holds a shard, generally a friend or trusted contact of the secret owner

• Threshold: the number of shards required to recover the secret

Scope
The aim of this assessment was to review the Dark Crystal implementation for security design flaws and
security-relevant bugs.

The Dark Crystal threat model explicitly states that Dark Crystal “does not aim to protect against attacks that
target a user’s hardware or operating system”. For example, the implementation does not address the fact
that encryption keys may remain in process memory. Therefore, such platform attacks were outside the scope
of this assessment. Similarly, the protocol is transport-agnostic, and it is up to the application to encrypt
messages and make them indistinguishable from normal application traffic to mitigate passive surveillance
and metadata leaks.

In addition, it is important to note that multiple protocol features discussed in the documentation are not yet
implemented in the dark-crystal-key-backup-java project. The project is still a work in progress, and this
report does not specifically identify security features which are currently missing but planned for the future.
However, due to their importance to the protocol, it is worth noting a couple significant areas which are
currently unimplemented.

Revocation of shards
Due to the possibility of a secret owner finding one or more custodians to be malicious, or wanting to make a
previously shared secret unrecoverable, revocation of shards is a desirable capability to add to the base
implementation. As discussed in the Dark Crystal documentation, this would work by the secret owner
requesting all benevolent custodians to delete their shards (or ephemeral keys in the case of an append-only
log), aiming to make it impossible to meet the share's threshold.

Long-term persistence of shards
Custodians may lose shards, such as by losing their phones or uninstalling the application. A secret owner
might not know that they can no longer reach the threshold to recover their secret, until they actually try to
combine. One suggestion for the Dark Crystal protocol would be for peers to send heartbeat messages over a
background channel, so a peer can periodically show the secret owner that they still hold their shard. This
could provide feedback to the secret owner within the application, and so a secret owner could determine
whether their sharded secret has become unrecoverable, at which point they could create a new share.

https://darkcrystal.pw/threat-model/#scope-of-this-report
https://darkcrystal.pw/threat-model/#considerations-for-message-transport
https://darkcrystal.pw/threat-model/#revocation-of-shards

Page 7 of 12

Privileged and Confidential
Report

CRITICAL-RISK FINDINGS

No “Critical-Risk” findings were identified during the course of the engagement.

HIGH-RISK FINDINGS

No “High-Risk” findings were identified during the course of the engagement.

MEDIUM-RISK FINDINGS

No “Medium-Risk” findings were identified during the course of the engagement.

LOW-RISK FINDINGS

L1: Out-of-Date Library in Use

Description:

dark-crystal-key-backup-crypto-java uses the SpongyCastle library, which is obsolete. SpongyCastle is a
repackaging of the popular BouncyCastle library, which implements cryptographic algorithms in Java.

Early versions of Android bundled an old, restricted version of BouncyCastle under the original classpath of
the library. This led to the creation of SpongyCastle to provide developers access to the full suite of
BouncyCastle algorithms without classpath clashes with the restricted version. However since Android 3.0,
released in 2011, Android changed the classpath for the bundled limited BouncyCastle library, enabling
application developers to install a complete BouncyCastle without conflicts. So for modern Android devices
the SpongyCastle workaround is no longer necessary, and the library is now unmaintained.

Impact:

The version of the SpongyCastle library in use is 1.58, which according to the GitHub releases page is the
latest, published in 2017. This trails far behind the current version of BouncyCastle, 1.69. Several
vulnerabilities in BouncyCastle have been published and fixed in the intervening years, while SpongyCastle
has not received any fixes since 2017.

The assessment team was unable to identify any vulnerabilities affecting the specific classes and methods
used in Dark Crystal. However if new vulnerabilities are found in BouncyCastle, an attacker could use these to
focus exploit attempts on Dark Crystal, knowing that applications using SpongyCastle do not receive updates
to their cryptographic algorithm library.

Reproduction:

Lines 7-13 of build.gradle in dark-crystal-key-backup-crypto-java show that com.madgag.spongycastle is set
to version 1.58.0.0:

dependencies {
 implementation 'com.madgag.spongycastle:core:1.58.0.0'
 implementation 'net.i2p.crypto:eddsa:0.2.0'
 implementation 'org.whispersystems:curve25519-java:0.5.0'
 testImplementation 'org.junit.jupiter:junit-jupiter-api:5.3.1'
 testRuntimeOnly 'org.junit.jupiter:junit-jupiter-engine:5.3.1'
}

https://github.com/rtyley/spongycastle/releases
https://www.bouncycastle.org/
https://www.cvedetails.com/vulnerability-list/vendor_id-7637/Bouncycastle.html
https://www.cvedetails.com/vulnerability-list/vendor_id-7637/Bouncycastle.html

Page 8 of 12

Privileged and Confidential
Report

Recommended Remediation:

The team suggests switching to the latest version of BouncyCastle and using its implementations of the
XSalsa20, Poly1305, and Blake2b algorithms.

References:

Spongy Castle: is it obsolete?
Stack Overflow: How to add Bouncy Castle algorithm to Android

https://github.com/rtyley/spongycastle/issues/34
https://stackoverflow.com/a/66323575

Page 9 of 12

Privileged and Confidential
Report

INFORMATIONAL FINDINGS

I1: Malicious Custodian Can Disrupt Recovery

Description:

The Dark Crystal Threat Model documentation discusses the possibility of one or more malicious custodians. A
custodian might wish to learn a user secret, or to disrupt a secret owner's reconstruction of their secret. The
assessment team noted several opportunities where the implementation could be improved to detect and
report adversarial custodian behavior.

Impact:

A single malicious custodian, especially one involved in a large threshold share, could cause significant
disruption for secret owners.

After a failure to combine shards, the current implementation does not pass detailed information about the
failure reason back to the calling code. Even if a secret owner determines that one custodian is submitting
corrupted data during the combining protocol, the secret owner must attempt combines using every
threshold group of custodians minus one, until the malicious custodian is left out and the combine finally
works. This is a best-case scenario; without detailed information from the library, after an unsuccessful
combine a secret owner may assume their secret is lost forever.

Reproduction:

Rather than a publicly verifiable scheme, for several reasons Dark Crystal opted to use the classic variant of
Shamir's Secret Sharing with improvements, including signed shards. Signed shards, created by a private key
generated by the secret owner, mitigate the simple case where a malicious custodian corrupts their shard or
the appended ciphertext, because the custodian must submit their signature with the shard. If the signature is
missing or fails to verify, the share can be rejected by the secret owner.

However in the verifyAndCombine() method, lines 199-209 of the file SecretSharingWrapper.java in the dark-
crystal-secret-sharing-wrapper project, the exception does not provide information about which share caused
verification to fail:

 public static byte[] verifyAndCombine(List<byte[]> signedShares, PublicKey publicKey)
 throws Exception {
 EdDSA edDSA = new EdDSA();
 List<byte[]> rawShares = new ArrayList<>();
 for (byte[] signedShare : signedShares) {
 if (!edDSA.verifyMessage(signedShare, publicKey))
 throw new GeneralSecurityException("Unable to verify share");
 rawShares.add(EdDSA.detachMessage(signedShare));
 }
 return combine(rawShares);
 }

The higher-level receiveReply() and receiveForward() methods of dark-crystal-key-backup-java in file
KeyBackup.java, lines 197-210, which receive shards from custodians, do not perform signature verification,
leaving it to verifyAndCombine():

 private boolean receiveReply(Reply reply) throws Exception {
 if (!reply.isInitialized()) throw new Exception("Reply badly formed");

 // Check which secret this reply is for
 byte[] rootId = reply.getRoot().toByteArray();
 byte[] shard = reply.getShard().toByteArray();
 OwnSecret ownSecret = getOrCreateSecretByRootId(rootId);

https://darkcrystal.pw/threat-model/#malicious-or-compromised-custodian

Page 10 of 12

Privileged and Confidential
Report

 // Check branch reference to 'close' request (getBranch)
 byte[] branch = reply.getBranch().toByteArray();
 ownSecret.closeRequest(branch);

 return ownSecret.addShard(shard);
 }

The “forward” protocol additionally must handle the secret owner needing to receive the signing public key
from custodians, since the secret owner might have lost access to it. The current implementation in
KeyBackup.java, lines 234-238, accepts whichever key is received from a custodian, and is therefore also
susceptible to a malicious custodian submitting an incorrect key:

 if (forward.hasSignaturePublicKey()) {
 byte[] publicKeyBytes = forward.getSignaturePublicKey().toByteArray();
 PublicKey signaturePublicKey = edDSA.PublicKeyFromBytes(publicKeyBytes);
 ownSecret.setAuthorSigningPublicKey(signaturePublicKey);
 }

Recommended Remediation:

The assessment team recommends that shard verification occur at a higher level, in the dark-crystal-key-
backup-java receiveReply() or receiveForward() function in file KeyBackup.java, so the identity of the
custodian who sent a malformed shard can be displayed in the UI of the calling application. Additionally the
team recommends that if multiple different signing keys are submitted to the secret owner in the forward
protocol, the library should catch this case and report it to the calling application, which can then decide how
to handle it.

References:

Dark Crystal – Choosing a threshold-based secret sharing implementation
A Simple Publicly Verifiable Secret Sharing Scheme and its Application to Electronic Voting

I2: Resource Exhaustion Under No/Weak Consent Custodian Model

Description:

The Dark Crystal Threat Model documentation discusses three possible models for consent when a custodian
receives a shard from a secret owner:

1. No Consent: the custodian's software automatically stores the shard.
2. Weak Consent: the custodian's software automatically stores the shard but prompts the custodian for

whether they would like to keep it.
3. Strong Consent: the custodian must confirm they would like to receive a shard before it is stored on

their device.

The implementation itself does not make any assumptions about which form of consent is used. However,
beyond the concerns raised in the documentation about the no/weak consent models, the implementation
does not address resource exhaustion attacks.

Impact:

A malicious peer in a social network could send a large number of shards to prospective custodians. The
ciphertexts can be of arbitrary size and are stored indefinitely according to the Dark Crystal protocol. Since
shard messages are keyed on the root ID, a hash of share metadata, and because the library does not
implement or suggest any rate-limiting measures, an attacker could exhaust the file system storage of a
custodian — preventing them from receiving further shards — or cause the calling application to crash.

https://darkcrystal.pw/choosing-sss-implementation/
https://www.win.tue.nl/~berry/papers/crypto99.pdf
https://darkcrystal.pw/threat-model/#consent-to-custody-of-a-shard

Page 11 of 12

Privileged and Confidential
Report

Reproduction:

Lines 97-102 of KeyBackup.java in dark-crystal-key-backup-java switch on the type of Dark Crystal message
received:

 public void receiveDarkCrystalMessage(byte[] message, byte[] authorEncryptionPublicKey, byte[]
authorSigningPublicKey) throws Exception {
 DarkCrystalMessage.DarkCrystal darkCrystalMessage = DarkCrystalMessage.DarkCrystal.parseFrom(message);
 switch (darkCrystalMessage.getMsgCase().name()) {
 case "SHARD":
 receiveShard(darkCrystalMessage.getShard(), authorEncryptionPublicKey, authorSigningPublicKey);
 break;

Lines 171-175 receive shards with the secret owner's encryption and signing keys, create a ReceivedShard
object, and store it in a receivedShards list:

 private void receiveShard(Shard shardMessage, byte[] authorEncryptionPublicKey, byte[] authorSigningPublicKey)
throws Exception {
 if (!shardMessage.isInitialized()) throw new Exception("Shard badly formed");
 ReceivedShard receivedShard = new ReceivedShard(shardMessage, authorEncryptionPublicKey,
authorSigningPublicKey);
 receivedShards.put(toHexString(receivedShard.getRootId()), receivedShard);
 }

Recommended Remediation:

The assessment team recommends considering limiting the size of data received and creating separate shard
storage with limited size for each individual peer. Then a peer who performed this attack could only exhaust
their own shard storage allocation. If this finding is addressed in the application implementation rather than in
the Dark Crystal library, the team recommends mentioning this consideration in the documentation.
Alternatively encouraging Strong Consent as the preferred option for custodian consent would alleviate the
risk.

References:

CWE-400: Uncontrolled Resource Consumption

I3: Lack of Validation in Share Size May Allow Buffer Overrun

Description:

The dark-crystal-shamir-secret-sharing project implements a Java Native Access (JNA) interface to the C-
language dsprenkelssss library. This enables sss library methods to be called without having to rewrite the
entire algorithm in Java. It also offers an opportunity to mitigate memory safety issues inherent to the C
language using input length verification. This enables providing a library interface which is less prone to
accidental misuse by developers.

However, the project contains methods which are vulnerable to buffer over-reads when called incorrectly.
Buffer over-reads in the context of memory-unsafe languages such as C are when memory is accessed beyond
the boundary of a fixed-length buffer. A Secrets class goes some way toward preventing misuse, but its use is
not enforced.

Impact:

A developer using the dark-crystal-shamir-secret-sharing JNA library could potentially write code where the
data stored in a secret would include not just the provided secret, but also additional bytes located in
contiguous heap memory of the libsss.so library.

https://cwe.mitre.org/data/definitions/400.html
https://github.com/dsprenkels/sss

Page 12 of 12

Privileged and Confidential
Report

The risk is minimized because the Dark Crystal documentation encourages developers to use the higher-level
dark-crystal-shamir-secret-sharing-wrapper rather than directly using the JNA interface. Further, the
additional bytes are unlikely to contain significant data such as a previous secret beyond the lifetime of the
process. Nevertheless, it is preferable to eliminate out-of-bounds-reads which do not occur in typical Java
code.

Reproduction:

In the C-language sss library, within the sss_create_shares() function in file sss.c, line 94, 64 bytes of provided
secret data is copied to a buffer to be encrypted:

/* AEAD encrypt the data with the key */
memcpy(&m[crypto_secretbox_ZEROBYTES], data, sss_MLEN);

In the JNA library, the SSS.createShares() method provides the interface to this low-level function.
SSS.createShares() accepts a byte array for the secret as its first argument. If the method is called with a
secret less than 64 bytes, then the C memcpy() function will copy past the end of the secret, encrypting
additional memory into the secret, as demonstrated by the following test:

package org.magmacollective.libsss;

import org.junit.Assert;
import org.junit.Before;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class TestEncodeDecode
{

 @Before
 public void prepare()
 {
 NativeUtil.configureJnaLibraryPath();
 }

 @Test
 public void createShares()
 {
 byte[] secret = "a secret".getBytes();
 List<byte[]> shares = SSS.createShares(secret, 3, 2);
 byte[] reconstructed = SSS.combineShares(shares);
 System.out.println(Arrays.toString(reconstructed));
 // Output: [97, 32, 115, 101, 99, 114, 101, 116, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
37, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -96, 24, 91, -36, -69, 127, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -127, 0,
0, 0, 0, 0, 0, 0]

 }

}

Recommended Remediation:

The Secrets.create() method sets a minimum length of 64 bytes for the secret and pads it with zeroes.
However SSS.createShares() and SSS.createKeyshares() do not require use of this helper method. The
assessment team recommends that each method verify it receives a 64-byte or 32-byte array, respectively,
before proceeding to call C functions.

References:

Buffer over-read

https://en.wikipedia.org/wiki/Buffer_over-read

